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ABSTRACT 
In ad-hoc human-robot collaboration (HRC), humans and robots 
work on a task without pre-planning the robot’s actions prior to 
execution; instead, task allocation occurs in real-time. However, 
prior research has largely focused on task allocations that are pre-
planned - there has not been a comprehensive exploration or eval-
uation of techniques where task allocation is adjusted in real-time. 
Inspired by HCI research on territoriality and proxemics, we pro-
pose a design space of novel task allocation techniques including 
both explicit techniques, where the user maintains agency, and 
implicit techniques, where the efciency of automation can be 
leveraged. The techniques were implemented and evaluated using 
a tabletop HRC simulation in VR. A 16-participant study, which 
presented variations of a collaborative block stacking task, showed 
that implicit techniques enable efcient task completion and task 
parallelization, and should be augmented with explicit mechanisms 
to provide users with fne-grained control. 

CCS CONCEPTS 
• Human-centered computing → Human computer interaction 
(HCI); Interaction paradigms; Collaborative interaction. 
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1 INTRODUCTION 
In human-robot collaboration (HRC), humans and robots work 
together to achieve a common goal. For example, in a simple in-
dustrial assembly task, a human-robot team builds a structure by 
picking up and placing objects in the environment. Collaboration 
in these tasks can be crucial especially when it leverages the unique 
strengths of the human (e.g., dexterous manipulation) and robot 
(e.g., precise placement of objects). We envision human-robot col-
laboration where the human and robot seamlessly work together 
as equal partners. One of the many challenges in human-robot col-
laboration is determining what actions the robot should take when 
collaborating with a human teammate, while avoiding conficts 
such as picking up the same object – a problem known as task 
allocation [14]. Contemporary approaches to task allocation can 
include pre-planning the robot’s [20] and potentially, the human’s 
actions [26]. While pre-planning can reduce human cognitive load 
during task execution, it may come at the expense of human agency 
[12]. Humans may want fexibility in task completion due to many 
reasons – varying preferences, factors afecting their performance 
such as inherent ability or fatigue, factors relating to the robot’s 
performance such as its inability to pick up certain objects, and 
unforeseen environmental factors. Approaches for more fexible 
task allocation involve online planning, where the robot adapts 
to the user’s actions and selects actions that complement them 
[37]. However, online planning typically requires an initial shared 
plan to be fnalized before task execution which may not always be 
possible. 

There are also many tasks in which pre-planning is not possible 
– creative tasks like completing jigsaw puzzles and cooking – where 
collaboration is ad-hoc, and task allocation is pursued through sim-
ple coordination behaviors. For example, akin to “Put-that-there” 
for graphical interfaces [3] the user could explicitly request the 
robot’s assistance verbally, [2] the robot could monitor the user 
and react by intervening when assistance is needed [29], or the 
robot could take proactive actions instead of reacting to the user or 
requiring explicit user input [18]. This paper focuses on expanding 
the range of coordination behaviors to facilitate task allocation in 
ad-hoc human-robot collaboration with a specifc focus on tabletop 
settings. We take inspiration from studies of human collaboration 
where team members incorporate coordination behaviors such as 
exhibiting an intuitive sense of what others are doing, understand-
ing how the workspace is shared amongst team members [23], and 
utilizing subtle and spatial cues [1]. 
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Figure 1: We envision task allocation techniques for ad-hoc collaboration that exploit coordination behaviors from human 
collaboration. Illustrated is our proposed design space, with explicit techniques where allocation occurs through user input 
and implicit techniques where the robot makes allocations through a heuristic. Explicit techniques include a. Voice where 
objects are allocated verbally, b. Menu which leverages spatial interaction, c. Subtle Relocation where objects are assigned if 
they are pushed towards the robot, and d. Fixed Territories where objects are allocated by moving them between territories. 
Implicit techniques include e. Proactive where objects nearest to the robot’s gripper are selected frst, f. Distance where objects 
are assigned according to their distance from the robot’s base, g. Gaze where the user’s eye gaze creates territories that the 
robot avoids picking objects from, and h. Proximity where the user’s activity in a region creates territories that the robot 
avoids picking up objects from. 

Through an understanding of coordination behaviors demon-
strated in human collaboration, we propose a design space of novel 
task allocation techniques – ways of specifying what the robot and 
user should work on in real-time. Some techniques are explicit, re-
quiring the user to allocate objects through deliberate action while 
others are implicit, enabling the robot to make inferences based on 
a heuristic. For instance, an explicit allocation in human collabo-
ration can be initiated by one team member telling another, “Pick 
up the yellow block close to you.” An implicit allocation could occur 
when a team member picks up an object nearby and places it across 
the table where their teammate is working. We propose a design 
space with three new explicit techniques: menu, subtle relocation,
and fxed territories and three new implicit techniques: distance,
gaze, and proximity. 

We envision these allocation techniques, which augment visu-
alizations elements and spatial interaction, being applied to HRC 
mediated by digital tabletops and mixed reality. The proposed tech-
niques were prototyped in a tabletop HRC simulation in VR and 
evaluated in a controlled user study with 16 remote participants 
who completed various confgurations of a collaborative stacking 
task. The fndings suggest that implicit techniques inspired by hu-
man collaboration can improve task performance and should be 
augmented with explicit mechanisms to provide users with fner 
control over task allocation. 

This work is an important step towards the design of intuitive 
task allocation which can reduce human burden in ad-hoc HRC,

 
 

 

bringing us closer to the vision of robots and humans being equal 
partners. In summary, we make the following contributions: 1. a 
design space for task allocation techniques in tabletop HRC inspired 
by human collaboration, 2. the implementation of these techniques 
within a novel VR HRC simulation, and 3. a systematic evaluation 
of the techniques in a user study with 16 participants. 

2 RELATED WORK 
This section recaps prior approaches to task allocation – planning 
(ofine and online) and coordination behaviors. Following this we 
summarize instances where HRI researchers have successfully in-
corporated coordination behaviors into HRC, as well as promising 
coordination behaviors that have not received much attention in 
HRC (territoriality and proxemics). Lastly, we review intuitive inter-
faces for robot control and end-user programming which motivated 
the design of our task allocation techniques. 

2.1 Task Allocation 
HRI researchers have proposed many approaches for task alloca-
tion. These include planners that rely on a priori task allocation 
performed ofine, and online planners. Ofine planners have been 
proposed which can plan at the team level, task level, and agent 
level while considering the skills needed by the agent (or robot) to 
perform them [20]. Other planners assign actions for the human 
and robot, by considering their unique capabilities, assigning ac-
tions to a specifc member when it benefts from their touch [26]. 
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However, these approaches [26, 40] do not account for human pref-
erence and may reduce humans’ sense of agency. On the contrary, 
researchers have demonstrated that humans prefer task allocation 
to be performed by autonomous planners as it is less burdensome 
[12]. In contrast to ofine planners, online planners may not require 
a fxed action sequence be defned a priori. For instance there are 
planners which can adapt during the collaboration by choosing 
actions for the robot to complement their human teammate [37], 
although they may require an initial shared plan to be negotiated 
before task execution. Turn taking is another approach taken by 
task planners through which agents negotiate allocation during 
task execution [27]. 

Alternative approaches forego planning and propose coordina-
tion behaviors that human collaborators frequently use, to facili-
tate ad-hoc collaboration. These behaviors may include negotiating 
which objects to work on and actions to take by exchanging implicit 
or explicit cues, as well as observing the progress of teammates 
to resolve hesitation or frustration. Baraglia et al. propose three 
mechanisms [2] where: a human can request a robot’s assistance 
explicitly, a robot can observe their human partner and react when 
they struggle, or a robot can proactively take actions to advance 
task completion without being prompted. Schulz et al. proposed the 
aforementioned as well as two further mechanisms: autonomous 
and human-commanded [31], and evaluated them in various HRC 
tasks. From these evaluations we surmise that users prefer to work 
with proactive robots but sometimes wish to control the robot more 
carefully especially when working on tasks that require joint or 
combined actions. We are encouraged by the success of coordi-
nation behaviors for task allocation in ad-hoc collaborative tasks 
and contribute a design space of task allocation techniques which 
employ coordination behaviors from human collaboration. 

2.2 Coordination Behaviors Inspired by 
Human Collaboration 

Researchers have observed how human collaborators coordinate 
their actions and appropriated them into the design of coordination 
for human-robot collaboration. For instance, Shah and Breazeal 
propose the Chaski task planner which adaptively plans robot ac-
tions based on what its human teammate is doing in a collaborative 
task. In addition, it incorporates several implicit and explicit co-
ordination behaviors from human collaboration together such as 
providing status updates and acting to minimize the idle time of 
team members [36, 39]. Robot object handover has been enhanced 
by incorporating the coordination strategies of waiting and slow-
ing down to observe team members before handing them the next 
object [17]. Based on human studies of the use of communicative 
gestures, researchers have imbued robots with the ability to gesture 
to signify operations on objects for an assembly task [11], and to 
reference objects in diferent task contexts [30] (e.g. when blocks 
are far from the referrer or when there is no visibility). Hofman 
and Breazeal found that a robot employing an anticipatory action 
selection mechanism by observing and predicting the human team-
mate’s next action outperformed a naïve reactive action selection 
mechanism in a simulated HRC construction task [16]. Human gaze 
is another useful coordination behavior used by robots to resolve 
hesitation when humans are choosing between two similar-looking 

objects [29], and to proactively plan to pick up an object that a 
human is looking at but has not yet requested the robot to pick up 
[18]. 

Our interest is in adapting coordination behaviors from human 
collaboration as it relates to task allocation. We specifcally focus 
on the practices of territoriality and proxemics. Territoriality is 
an implicit mechanism that explains how collaborators distribute 
resources for task completion on the workspace into diferent terri-
tories: personal, group, and storage [33]. Proxemics deals with how 
humans navigate social spaces with other humans [5, 13, 38]. The 
phenomenon has also been demonstrated when humans are in close 
proximity to robots [23] and engineered to enable socially accept-
able robot navigation [22]. Proxemic interaction [1] enhances the 
notion of proxemics and wrestles with the idea that people’s physi-
cal and spatial relationships with objects indicates and shapes the 
ways in which they use them. HCI researchers have exploited prox-
emic interaction to design media players in shared living spaces [1], 
public interactive whiteboards [21], and interactive public ambi-
ent displays [41]. However, to our knowledge, neither territoriality 
nor proxemic interaction have been incorporated in human-robot 
collaboration, particularly for task allocation. Territoriality and 
proxemic interaction form the basis for fve of our proposed task 
allocation techniques. 

2.3 Intuitive Interfaces for Robot Control 
Task allocation in ad-hoc collaboration involves instructing the 
robot what to do at a given moment. This can be considered a 
problem of robot control, for which many intuitive interfaces exist. 
Sketch-based interfaces enable users to draw navigation paths or 
invoke immediate commands such as pausing or stopping [28]. User 
pointing is an intuitive mechanism to select objects for a robot to 
work on [24, 25] and has been mimicked with technical solutions 
such as laser pointers [19]. Augmented Reality (AR) interfaces allow 
users to select workspace objects for robot manipulation through a 
tablet [9] and to teleoperate robots via an HMD [42]. 

HRI researchers have also designed tools for programming a ro-
bot to achieve a sequence of steps in an intuitive manner. GhostAR 
[6] allows users to record an interaction sequence where the ro-
bot and the user’s actions are pre-specifed. Later, the system can 
synchronize a live user’s actions with pre-recorded user and robot 
actions. PATI utilizes a tabletop projection system to assist users 
in programming a robot to perform pick-and-place tasks [10]. Situ-
ated tangible robot programming lets users place physical blocks in 
parts of the workspace to instruct the robot to pick up and drop an 
object [34]. We propose techniques inspired by these interfaces to 
enable users to defne real-time allocation sequences in HRC tasks. 

3 DESIGN SPACE OF TASK ALLOCATION 
TECHNIQUES FOR TABLETOP HRC 

Guided by our review of prior literature, we propose a design space 
of techniques for task allocation in tabletop HRC. Our design space 
consists of two main dimensions (technique class and allocation per-
spective) and one sub-dimension (workspace type). The dimensions 
as they map to each technique can be seen in Table 1. 

Technique Class: Techniques can be explicit – where an allo-
cation is made through a deliberate action taken by the user or 
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Figure 2: Explicit allocation techniques: a. Menu – touching and pointing to allocate objects; b. Subtle Relocation – pushing 
an object towards the robot to allocate it; c. Fixed Territories – moving objects into the robot’s territory to allocate them. 

implicit – where the robot proactively allocates objects to itself 
based on a heuristic. 

Allocation Perspective: Object-centric allocations occur by di-
rect interaction with an object. Robot-centric allocations are made 
by considering the relationship between objects and the robot. 
Workspace-centric allocations consider how objects are located with 
respect to the workspace they occupy. 

Workspace Type: For techniques that utilize a workspace-centric 
allocation perspective, the workspace can be either static, remaining 
constant over time, or be dynamic, changing over time depending 
on the context. 

3.1 Explicit Techniques 
Explicit techniques enable task allocation through deliberate user 
action. The robot only attempts to pick up an object after it has 
been allocated. We prototyped four explicit allocation techniques, 
visualized in Figure 2. 

Voice (Baseline): With this technique, the user can assign an 
object to the robot by reciting the number that appears atop the ob-
ject. The technique is a re-implementation of an existing technique 
that prior work has proposed to request assistance from a robot [2] 
and to command it [18], serving as a baseline for comparisons. 

Menu: Using this technique, the user allocates objects through 
a familiar menu metaphor that is ubiquitous. Allocations are made 
by touching and holding an object or by pointing at an object 
via the index fnger until a menu appears, which allows them to 
allocate an object to themselves, the robot, or cancel a previous 
allocation. 

Subtle Relocation: This technique allows the user to assign an 
object to the robot by pushing it in its direction through direct 
manipulation. Likewise, the user can assign an object to themselves 
by pulling it towards their direction. The technique requires a 
successful gesture to be detected and for the object to move in the 
direction of the user or robot. At a conceptual level, the technique 
exploits the notion of proxemic interaction - objects on the table can 
recognize their movement with respect to the user’s and robot’s 
locations to determine who should work on them. It leverages 
the movement dimension of proxemic relationships [1] whereby 
a change in an object’s position (velocity) determines whether an 
object should be assigned to the robot or whether the user is simply 
moving objects around the table. 

Fixed Territories: This is a technique inspired by tabletop terri-
toriality [33], an implicit mechanism through which collaborators 

naturally        
longing to each user (personal), others belonging to the group, and 
additional regions where task-related objects are stored. We imple-
mented personal and group territories in fxed locations of the table 
depending on where the user and robot are situated at the start 
of the task. The territories are robot - regions closest to the robot, 
human - regions closest to the user, and group - regions between 
the user and robot. Objects can be allocated to the robot or the 
user by manipulating them into the respective territory and can be 
unallocated by moving them into the group’s territory. The terri-
tories are visualized on the tabletop with green regions indicating 
the robot’s territory, red regions denoting the user’s territory, and 
white regions signifying the group’s territory. 

This class of techniques assists the robot in making its own task 
allocations by continuously evaluating a heuristic to select an object 
to work on. We propose four implicit allocation techniques, seen in 
Figure 3. 

Proactive (Baseline): This technique leverages the position di-
mension of proxemic relationships in relative terms [1]. It is a 
re-implementation of the proactive robot mechanism described by 
Baraglia et al. [2] where the robot assists the user by picking up 
objects closest to where it has recently completed an activity (such 
as placing an object). As the gripper is empty, the robot can fnd a 
nearby object to assist the user. This technique serves as a baseline 
to compare the proposed implicit techniques. 

Distance: This is a technique that borrows the notion of prox-
emic relationships between objects; here we consider the relation-
ship between the robot’s base and objects in the workspace. The 
position of an object in absolute terms [1] determines whether an 
object should be picked up by the robot – the robot allocates objects 
to itself depending on their distance from its base. Unassigned ob-
jects that are closest to the robot’s base are prioritized while objects 
furthest from the robot are allocated later. The user can infuence 
what the robot picks up by changing the objects’ relative positions 
from its base. 

Gaze: This technique employs the proxemic interaction concept 
of attending to other surrounding objects and devices [1] through 
which the user is not attempting to directly control the system 
(robot in this case); rather they direct their attention to objects 
in the workspace. User gaze in a region facilitates the creation of 
dynamic user and robot territories [33]. The robot assigns objects 

partition the workspace into diferent regions, some be-

3.2 Implicit Techniques 
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Figure 3: Implicit allocation techniques: a. Proactive – robot picks up the object labelled “1” and places it at the target. Then, 
it picks up the object closest to its gripper; b. Distance – robot picks up the object closest to its base, starting with the object 
labelled “1” and then “2”; c. Gaze - user looks at the robot’s base, causing it to become red (user’s territory) and the robot picks 
up object on the opposite side where the user isn’t looking (robot’s territory); d. Proximity - user picks up an object and moves 
it to a new location, causing its initial position to become the user’s territory. Then, the robot avoids picking up any objects 
near the user’s territory and instead picks up an object from the group’s territory. 

to itself based on whether they are in its territory (the priority) or in 
the group’s territory, while avoiding picking up any objects that are 
in the user’s territory. We used head tracking from the VR headset 
to calculate a “gaze” score - a measure of the extent to which the 
user is looking at an area of the workspace. To determine which 
area, the table is discretized into a rectangular grid, where each 
tile corresponds to a region in the workspace. The gaze score of 
each region is averaged over a fxed timeframe (a system parameter) 
which is used when the robot is allocating objects to itself. When 
the robot makes an allocation, it calculates an average of the gaze 
scores (which are already averages) of regions nearest to every 
object. Then, the robot selects the object with the lowest gaze 
average signifying that the user is not working on that object or 
objects near it. A heatmap visualization helps the user understand 
how their gaze afects the formation of territories, by displaying 
red regions to indicate the user’s territory, green regions to indicate 
the robot’s territory, and white regions which belong to the group. 

Proximity: This technique is also based on tabletop territoriality 
[33]. The robot allocates objects in regions close to or within its 
territory frst, followed by objects in the group’s territory, and 
avoids objects close to or within the user’s territory. At the start of 
the task, the entire workspace belongs to the group. Each time the 
human or robot picks up an object from an area of the workspace 
(its initial location) and places it in another, the regions nearest 
to the object’s initial location are infused with a proximity score 
to signify that these regions are being used by the user or robot 
respectively, leading to the formation of territories. When there is 
no further activity in a region, these scores decay back to becoming 
the group’s territory. Further, a territory belonging to the robot 
can be overridden if the user picks up an object from that region 
(infusing it with a user proximity score). When the robot makes 
an allocation, it calculates the average proximity score of regions 
nearest to each object and picks the object with the highest robot 
proximity score if one exists, or an object with a low proximity 
score (in group territories) and avoids objects with a high user 

proximity score above a certain threshold (a system parameter). 
These territories are also visualized via a tabletop heatmap. 

4 EVALUATION TESTBED 
To evaluate our techniques, we prototyped a human-robot collabo-
ration simulation in VR. Our rationale for using VR was partially 
infuenced by the COVID19 pandemic as testing in shared physical 
spaces was a challenge. However, a VR implementation allowed 
us to consider the design of techniques that exploit the benefts of 
digital tabletops and mixed reality, such as the ability to visualize 
what the robot is doing or providing a clear mental model of certain 
techniques with heatmaps. 

Our simulation integrates the Unity game engine1 and ROS2 

facilitated by ROS#3 through WebSocket. The Unity environment 
consists of a tabletop workspace that is shared by a user and a 
collaborative robotic arm. The user interacts with the simulation 
environment through a VR controller or the Leap motion. The 
robot’s physics are simulated by the ROS simulation engine, Gazebo, 
through a URDF model provided by the robot’s developers (Franka 
Emika). This robot URDF is also imported to Unity and serves 
as a visualization for the user, with its position and orientation 
mirroring its Gazebo equivalent through a ROS topic. Unity also 
provides constant updates about the positions and orientations of 
all tabletop objects to Gazebo through a ROS topic which is utilized 
for motion planning. When an object is allocated to the robot and 
needs to be picked up, Unity requests a motion plan from the MoveIt 
framework through a ROS service. Upon generating a motion plan, 
MoveIt begins to play the trajectory and the robot’s position and 
orientation are mirrored in Unity. The system is designed so that 
the server and client can run on machines in diferent networks 
which helped us to conduct the remote user studies. 

1https://unity.com/
2https://www.ros.org/ 
3https://github.com/siemens/ros-sharp 

https://unity.com/
https://www.ros.org/
https://github.com/siemens/ros-sharp
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Table 1: Mapping the proposed techniques to the dimensions of the allocation techniques design space. 

Technique Voice 

Class 

Menu Fixed Proactive Gaze Proximity Distance 

Explicit Explicit Explicit Implicit Implicit Implicit Implicit 
Perspective 

Subtle 

Object Object Workspace Robot Robot Workspace Workspace 
Workspace x x Static x x Dynamic Dynamic 

Explicit 
Robot 
x 

Figure 4: Evaluation testbed where: the Client executes a Unity-based simulation which the user interacts with through a VR 
headset; and the Server which receives information about objects on the workspace as well as user commands through ROS# 
which are processed by the Gazebo simulation engine and sent to MoveIt to prepare motion plans. The server and client can 
run on the same or diferent machines on diferent networks. 

The allocation techniques were implemented in Unity and lever-
aged a task allocation manager to request the robot to pick up and 
place objects. The task allocation manager interacted with MoveIt 
to request motion plans. All techniques worked autonomously, but 
we employed Wizard-of-Oz [8] for the voice technique in the user 
studies to prevent inconsistent performance from difering input 
and output audio participant hardware. With the voice technique, 
when the user verbally requests the robot pick up an object, the 
wizard presses the corresponding number on their keyboard caus-
ing the robot to make a motion plan towards that object. Please 
see supplementary materials for implementation details of all tech-
niques. 

5 EVALUATION 
We designed a controlled lab experiment to assess the utility and 
usability of our newly proposed allocation techniques in a single 
robot-single user setting. Although the explicit techniques provide 
a clear model of interaction for task allocation, they require manual 
input and can be cumbersome for users. On the other hand, users 
may have a more difcult time building mental models of the im-
plicit techniques but upon achieving this could be freed up to work 
as they naturally would with human teammates. Ideally, the user 
would be able to complete their task without expending much efort 
and time tending to the robot. On the other hand, a poor technique 
would force the user to waste considerable time directing the robot 
(in the explicit case) or waste time waiting for the robot to make 
the right allocations (in the implicit case). Though some of the 
techniques in our design space have been tested in the past (the 
baseline techniques - voice and proactive), there has never been a 
comprehensive evaluation of the relative benefts and drawbacks 
of the classes of techniques they represent, namely explicit and 
implicit techniques. 

To assess the techniques’ performance, we chose a block stack-
ing task, which is commonly employed in HRC studies. The task 
was modelled to resemble an equal partnership where both team 
members had an equal number of blocks that only they could place 
at the goal locations. Our interest was in studying how the tech-
niques would perform when the task necessitates varying levels of 
human-robot coordination, so we designed two tasks - a coupled 
task where the stacking structures required the placement of the 
user’s and robot’s blocks in alternating fashion, and a decoupled 
task where the stacking structures for the user and robot were sep-
arate and could be completed independently. Since our techniques 
difer in allocation perspective with some being object-centric, robot-
centric, and workspace-centric we were also curious as to whether 
the placement of the user’s and robot’s objects would afect tech-
nique performance; so, we manipulated whether user’s and robot’s 
objects on the table were scattered or sorted. 

5.1 Task Rules 
In the stacking tasks, only the user could place yellow blocks at the 
goal locations and only the robot could place black blocks at the goal 
locations, which users were informed of prior to the study. However, 
the robot was not provided this knowledge a priori meaning that 
it only realized that a yellow block could not be picked up upon 
attempting it. This constraint was designed to model tasks where 
the robot is not aware of how its capabilities map to the task at 
hand, and the user has no mental model of the robot’s capabilities 
- tasks such as those involving the manipulation of oddly shaped 
objects or even soft objects. When using implicit techniques, the 
robot could attempt to pick up each yellow block once if it were 
allocated, but it would never re-attempt to pick up a yellow block 
upon failing. Hence it was the user’s responsibility to ensure that 
the robot did not waste time attempting to pick up yellow blocks. 
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Figure 5: The 2 x 2 experimental block participants completed when trying each interaction technique, in which the stacking 
task can be coupled (a, b) or decoupled (c, d), and objects are either scattered (a, c) or sorted (b, d). In coupled tasks, structures 
require the placement of both the user’s and robot’s blocks while decoupled tasks can be completed independently. 

Upon allocation, in our implementation, the robot could pick up 
and place all black blocks with a success rate similar that of the 
average user. 

5.2 Participants 
Seventeen participants aged 18 to 45 (4 females, 13 males) were 
recruited via research networks and forum posts (e.g., Reddit). Par-
ticipants were primarily HCI researchers (11 out of 17) and included 
some VR enthusiasts (6 out of 17). We dropped one female partici-
pant from the analysis due to technical difculties when conducting 
the study. All participants had VR experience while 50% had used 
VR for over three years, and used diferent VR HMD (HTC Vive: 2, 
HTC Vive Pro: 3, Oculus Rift: 5, Oculus Quest: 4, and Valve Index: 
2). 

5.3 Measures 
Data from the simulation was collected when participants com-
pleted each trial. These included: 1. task completion time, 2. user 
trial time, segmented into the time the user spent idling, manipulat-
ing objects towards the goal, maneuvering objects without placing 
them at the goal, and allocating objects when using an explicit 
technique; 3. robot trial time, segmented into the time the robot 
spent idling, manipulating objects towards the goal, and reaching 
objects; 4. number of touches by the user on an object, segmented 
by touches for allocation, manipulating objects, and maneuvering 
objects; 5. number of attempts by the robot to pick up a yellow 
object (errors); and 6. a log of the user’s and robot’s actions at each 
time step. 

Participants also provided responses to a questionnaire which 
asked for feedback about each allocation technique. The question-
naire gathered feedback on: 1. the ease of the technique, 2. the ef-
ciency of the technique, 3. the level of control over which objects 
the robot attempted to pick up, and 4. the level of parallelization 
over task completion. They also provided feedback on team fuency 
[15]: 1. whether the human-robot team worked fuently together, 
2. whether the human-robot team’s fuency improved over time, 
and 3. whether the robot contributed to the fuency of the inter-
action. Lastly participants provided some open-ended comments 
about each technique and how they might modify it and ranked 
the techniques in order of preference. 

5.4 Procedure 
The study was conducted remotely due to the COVID19 pandemic. 
Participants completed the study at home using their own hardware 
while we observed them through a video call. They deployed the 
Unity simulation on their machines which communicated with the 
ROS programs running on the experimenter’s machine. Prior to the 
study, participants completed a consent form and a demographic 
survey. We frst introduced them to the experiment, after which 
they became accustomed to the controls by completing a pre-study 
trial where they stacked two structures of four yellow blocks each 
without the robot’s help. Then, participants watched a video show-
casing the current technique and completed a practice trial where 
they again stacked two structures of four yellow blocks. Next, they 
completed the 2 x 2 experimental block (seen in Figure 5), where 
they encountered every combination of type of stacking task and 
object placement type in a randomized fashion. Regardless of the 
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Figure 6: Plots showing - a. completion time versus allocation technique; b. completion time versus task type; c. completion 
time versus object placement type; and d. comparison of completion times for each allocation technique by task type for the 
case where objects were scattered. Explicit techniques are shown in grey for plots a. and d. 

combination, in each task the user and robot completed four struc-
tures each consisting of four blocks, of which the user completed 
half (yellow blocks) and the robot completed the other half (black 
blocks). At the end of each experimental block, participants com-
pleted the short post-condition questionnaire. Participants ranked 
the techniques after the study. 

5.5 Study Design 
Our study employed a within-subjects experimental design and ma-
nipulated 3 variables: 1. allocation techniques (the eight described), 
2. type of stacking task (coupled versus decoupled), and 3. object 
placement (scattered versus sorted). An 8 x 8 balanced Latin square 
was used to expose participants to diferent orderings of the tech-
niques. Within each technique condition, participants were exposed 
to every combination of the 2 x 2 = 4 combinations of stacking task 
and object placement once in randomized order. 

6 FINDINGS 
We received data from 32 trials each from 16 participants (exclud-
ing practice trials). Six trials were not properly logged due to data 
corruption, leaving 506 trials (16 x 32 – 6 = 506). No outliers were re-
jected. The fndings emphasize comparisons between the allocation 
techniques in the presence of the other variables - task type and 
object placement, for the following data: 1. performance measures 
such as task completion time and robot errors, and 2. objective 
measures of team fuency including user idle time, robot idle time, 
and concurrent activity percentage. We also analyzed users’ sub-
jective perception of 1. technique performance and 2. team fuency. 
Repeated measures ANOVA tests were conducted to examine the 
quantitative data, with Bonferroni corrections for multiple com-
parisons and Greenhouse-Geisser corrections when the test for 
sphericity was not met. In the plots, grey backgrounds indicate 
explicit techniques, while error bars represent standard error. Hori-
zontal bolded lines indicate pairwise signifcance within a technique 
between conditions, while letters atop the bars indicate pairwise 
signifcance between techniques. 

6.1 Technique Performance 
Completion Time: Overall, the fndings suggest that implicit tech-
niques performed nearly as well as the baseline voice technique, 
while the fxed explicit technique also demonstrated promise. How-
ever, the object placement type and task types infuenced how the 
techniques impacted task completion. 

Figure 6a, b, and c show simple plots of completion time by 
technique, task type, and object placement. There was a signifcant 
efect of technique (F(4.56, 282.710) = 33.664, p < .0005), task type 
(F(1, 251) = 77.613, p < .0005), and object placement type (F(1, 251) = 
5.870, p = .016) on completion time. Pairwise comparisons showed 
that: 1. the menu was slower than all techniques, and subtle was 
slower than voice, fxed, and all implicit techniques, 2. the coupled 
task took longer than the decoupled task, and 3. the task took longer 
when objects were scattered versus when they were sorted. 

There was a signifcant interaction between technique, task type, 
and object placement type (F(2.777, 38.882) = 2.941, p = .049). Fur-
ther inspection revealed an interaction between allocation tech-
nique and task type but only when objects were scattered (F(2.509, 
35.121) = 3.140, p = .045) as Figure 6d shows. Pairwise comparison 
of the same technique between tasks (Figure 6d blue vs. orange) 
revealed signifcant increases in completion time for the menu, 
fxed, distance, gaze, and proximity techniques in the coupled task 
compared to the decoupled task, suggesting that participants took 
longer to complete the task when a higher level of human-robot 
coordination was needed, and objects were scattered. 

Robot Errors: Except for the subtle technique, explicit tech-
niques led to fewer robot errors while the implicit techniques led to 
a larger number of robot errors. The number of robot errors when 
using implicit techniques changed with the type of task and object 
placement as Figure 7 illustrates. 

We observed a signifcant interaction between technique and task 
type (F(2.992, 41.892) = 4.070, p = .013) and a signifcant interaction 
between technique and object placement type (F(4.047, 56.659) = 
4.051, p = .006). Pairwise comparison of the same technique between 
tasks (Figure 7b) revealed that the distance, gaze, and proximity 
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Figure 7: Plots showing - a. robot errors by allocation technique; b. robot errors by task type for each technique; and c. robot 
errors by object placement type for each technique. Explicit techniques are highlighted in grey. 

techniques caused more robot errors in the coupled task compared to 
the decoupled task. One explanation might be that these techniques, 
which are robot- and workspace-centric required users to keep 
track of the structure they were building, while simultaneously 
scanning and moving yellow objects that the robot might target 
next as these techniques are all autonomous. 

Pairwise comparison of the same technique between object place-
ment type (Figure 7c) showed that the menu, fxed, and gaze tech-
niques caused more errors when the objects were scattered com-
pared to when they were sorted. Gaze became much harder to use 
when objects were scattered possibly because looking at an area 
of the table meant that another area of the table containing both 
yellow and black objects was in the robot’s territory, causing it to 
make more incorrect inferences about what to work on (the yellow 
blocks). 

6.2 Objective Measures of Team Fluency 
In HRC team fuency can be quantifed by calculating the total 
percentage of time spent by the user and robot idling, and the 
amount of concurrent activity [15]. Figure 8a and b illustrate the 
total percentage of time spent by the human-robot team on dif-
ferent action types, including idling, taking goal-related actions, 
and taking overhead actions. Overhead time was calculated for 
the user by counting the time spent moving objects around the 
workspace without placing them at the goal, while overhead time 
for the robot included time spent reaching objects that it was not 
supposed to pick up (yellow blocks). HRC literature suggests that 
idle time percentage should be low for fuent collaboration while 
concurrent activity should be high. 

User Idle Time Percentage: Overall, idle time percentage was 
consistently high despite the technique (Figure 8a) but varied be-
tween task types. There is a signifcant interaction between tech-
nique and task type (F(7, 98) = 6.487, p < .0001), as seen in Figure 8c. 
Pairwise comparison of the same technique between tasks demon-
strated that users idled for signifcantly longer in the decoupled 
task versus the coupled task with all techniques except the menu 
where idle time was always high. This is surprising as the coupled 
task required more coordination increasing the likelihood that the 

user would be idling while waiting for the robot, but this may be 
explained by users’ inherent manipulation speed advantage over 
the robot, causing them to complete their structure in the decou-
pled task much faster, leading to more idling before the task was 
completed by the robot. 

Pairwise comparison between diferent techniques for the cou-
pled task showed that the menu led to more idling than the voice, 
proactive, distance, and gaze techniques, while the subtle technique 
led to more idling than the voice and all implicit techniques. Pair-
wise comparison of techniques for the decoupled task revealed that 
the subtle technique led to larger idle percentages than the menu 
and fxed techniques, and the menu resulted in lower idle percent-
ages than the distance and proximity techniques. The menu always 
led to long idle times which did not drastically increase in the decou-
pled task unlike with the other techniques possibly because users 
had to spend considerable time triggering the menu and selecting 
an option to allocate each object. This is evident in Figure 8a where 
overhead time for the menu is over 20%. 

Robot Idle Time Percentage: There is a signifcant efect of 
technique (F(7, 98) = 80.656, p < .0005) and task type (F(1, 14) = 
9.519, p = .008) on robot idle time percentage. Pairwise compar-
isons between techniques showed that: 1. the menu led to larger 
idle percentages compared to all techniques, 2 the fxed technique 
led to lower idle percentages compared to the subtle, proactive, gaze, 
and proximity techniques, and 3. the distance technique led to lower 
idle percentages than voice, subtle, gaze, and proximity techniques. 
Interestingly the fxed technique led to lower idle times for the 
robot possibly because users could allocate multiple objects quickly, 
so the robot always had an available action. Similarly, the heuristic 
for the distance technique always found an object if the task was 
not complete, keeping the robot occupied. Pairwise comparison 
revealed that the coupled task led to longer idle time percentages 
than the decoupled task. This contrasts the result from user idle 
time percentage where users idled more in the decoupled task, sug-
gesting they may have taken additional actions to facilitate robot 
task completion in the coupled task rather than idled. In addition, 
the total idle percentages for the robot are lower than the user, 
perhaps because the robot took longer to execute all its actions, 
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Figure 8: Plots showing percentage of time spent on goal-related actions, overhead actions, and idling by the - a. user and b. 
robot; c. user idle time percentage by task type for each allocation technique; d. concurrent activity percentage by task type 
for each allocation technique. Explicit techniques are highlighted in grey. Letters above bars indicate pairwise signifcance 
between techniques. Legend – V: Voice, M: Menu, S: Subtle, F: Fixed, Pr: Proactive, D: Distance, G: Gaze, Px: Proximity. 

from reaching an object to placing it at a goal location, when com-
pared to the user. Another explanation may be that users had rich 
interactions with the blocks, such as being able to use two hands 
or to push blocks around, whereas the robot could only maneuver 
one block at a time, limiting its efciency. 

Concurrent Activity Percentage: As Figure 8d shows, there is 
a signifcant interaction between technique and task type (F(7, 98) 
= 4.771, p < .0005). Pairwise comparison of the same technique 
between tasks showed that concurrent activity was higher for the 
coupled task than the decoupled task except in the case of the fxed 
technique. Despite requiring more coordination (which increases 
the likelihood of idling), it is interesting that concurrent activity 
was higher in the coupled task, which might once more be explained 
by the robot taking longer to complete each action than the user, 
leading to less opportunities for concurrent actions in the decoupled 
task. 

Pairwise comparison between techniques for the coupled task 
revealed that concurrent activity was lower for the menu compared 
to all techniques. Pairwise comparison between techniques for the 
decoupled task also showed that the menu resulted in lower con-
current activity than all techniques, the subtle technique led to 
lower concurrent activity than the distance technique, and the fxed 
technique led to lower concurrent activity than the voice, proactive, 
distance, and gaze techniques. This hints that explicit techniques 
might have led to lower concurrent activity, especially for the cou-
pled task, due to the overhead required for each allocation, which 

was less of an issue for the voice technique due to its multimodal 
nature. 

Figure 9 shows participants’ responses to the questionnaire. Their 
responses to each explicit (4) and implicit (4) technique were 
grouped, yielding 64 responses for each technique category (16 
participants x 4 explicit/implicit techniques). To contrast the difer-
ences between the explicit and implicit techniques in participants’ 
responses, we conducted Wilcoxon signed-rank tests on these pairs 
of 64 responses for every question about technique performance and 
team fuency. 

Technique Performance: There was a signifcant efect of tech-
nique type on user perception of being in control (z = -5.264, p 
< .0005), with explicit techniques favored in 47 of 64 responses 
(Median: 6) versus 9 of 64 responses favoring implicit techniques 
(Median: 4). We found a signifcant efect of technique type on user 
perception of being able to parallelize task execution (z = 1.964, p 
= .05); 32 of 64 responses favored implicit techniques (Median: 6) 
while 20 responses favored explicit techniques (Median: 5). There 
were no signifcant diferences in participation perception of ease 
and efciency by technique type. 

Team Fluency: We did not observe signifcant diferences in 
participant perception of robot fuency, fuency over time, or robot 
contribution by technique type. 

6.3 Subjective Preferences on Technique 
Performance and Team Fluency 
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Figure 9: Plots showing the number of 7-point Likert scale responses to questions on technique performance - a. ease of use, 
b. efciency, c. control, and d. parallelization; and fuency - e. team fuency, f. changes in team fuency over time, g. robot 
contribution. 

Technique Preference: The implicit techniques were generally 
liked but did not receive more than 1 vote for the most preferred in 
the case of the proactive, distance, and gaze techniques. For instance, 
the proximity technique received 5 votes for the second most pre-
ferred technique. In contrast, perceptions of the explicit techniques 
varied more. Amongst all techniques, 11 out of 16 participants most 
preferred the voice technique, and 6 out of 16 participants most 
preferred the fxed technique. On the other hand, the least preferred 
technique was menu, as stated by 13 out of 16 participants. 

7 DISCUSSION 

7.1 Implicit Versus Explicit Techniques 
The results suggest that task completion was aided by implicit 
techniques since they enable proactive task allocation without the 
user having to expend signifcant efort and time. With explicit 
techniques, users spent more time allocating objects to the robot, 
which contributed to increased overhead time, reduced concurrent 
activity, and in turn increased completion time, contributing to less 
fuent HRC. Though the voice technique performed well in this 
regard due to its multimodality, we could not quantify overhead 
time as we used Wizard-of-Oz. Further, there is additional overhead 
for the explicit techniques which currently appears as idle time – 
time spent by users waiting to see whether their allocation action 
was successful. This was especially evident when using the subtle 
technique, where gauging the pushing threshold was difcult and 
made the gesture harder to execute, particularly in the presence 
of yellow and black objects. The negative efects of the explicit 
techniques were more evident when working on the decoupled task 
where independent action was desirable but not possible due to 
the user having to constantly allocate objects for the robot. Despite 

the weakness of several explicit techniques, the fxed technique 
performed well and was well liked by participants as it ofered 
a simple model to allocate objects and keep track of the robot’s 
activities. 

Although the implicit techniques performed well, they also incur 
overhead, some which resulted from participants treating the im-
plicit technique explicitly while building a mental model of it. For 
example, when using the distance technique P4 remarked, “At the 
start I was pushing blocks near it but realized didn’t have need to do 
that as it would fnd the blocks anyway.” Other times participants felt 
that they had to maneuver objects for the robot to efciently do its 
job, detracting from completing their own task. P12 said, “My tactic 
was to look at a fxed point and bring all blocks of mine towards it and 
moved others away from it. This felt more efcient and I wasn’t giving 
anything to the robot aside from the initial stage.” Some participants 
moved their objects to a region they were looking at to prevent 
the robot from accidentally grabbing them. P5 said, “I again spent 
some time preparing the work areas by bringing my blocks over to my 
side, while making sure that the black blocks were not in red areas.” 
Additional overhead resulted from the robot mistakenly allocating 
yellow blocks, which happened often with the implicit techniques. 
Though it was not hugely detrimental to this task, incorrect robot 
inferences may undermine task execution if they are not addressed. 

There exists a clear tension between allocation techniques of-
fering control over task allocation and providing the ability to 
parallelize. Explicit techniques ofer a strong sense of control over 
task allocation, restoring agency to the user while implicit tech-
niques facilitate parallelization and concurrent activity. However, 
we are encouraged to see that some techniques such as voice, fxed, 
and distance seem to achieve both to varying extents - fxed allowed 
users to quickly allocate objects freeing them to focus on their task, 
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while distance enabled proactive robot behavior with little user 
allocation efort. 

7.2 Designing Intuitive Allocation Techniques 
for HRC 

Our results suggest that allocation techniques inspired by simple 
coordination behaviors such as territoriality and proxemics have 
straightforward potential. Several of our techniques achieved simi-
lar results to voice despite its performance representing a best-case 
scenario (the Wizard’s voice recognition was perfect, and the ro-
bot’s task consisted of only 8 blocks which were easy to keep track 
of). Though implicit techniques were generally well received as 
evidenced by participants’ subjective preferences (Figure 9), not 
all of them were universally liked. Gaze and proximity were found 
to be overbearing at times. P4 felt that when yellow blocks were 
clumped together, picking up an object did not prevent the robot 
from picking up yellow blocks in periphery regions to the newly 
spawned user territory. In this case, the area of efect was too small. 
In contrast, too large an area of efect when black and yellow blocks 
were clumped together would have prevented the robot from pick-
ing up any black blocks if the user picked up even one yellow block 
from the region. The gaze technique also sufered from having a 
large area of efect. 

Sometimes the user’s gaze would modify the table’s territories 
such that the robot could not take further actions, which was espe-
cially apparent when yellow and black blocks were scattered. This 
often forced users to look away, which did not feel intuitive (“I had 
to look at the blocks to get them but looking at them triggered an 
area there that robot should not pick up blocks from.” [P11]). Even 
when the user and robot worked on separate structures in the de-
coupled task, the user was unable to monitor the robot’s progress. 
P2 said, “I think I was a bit worried about looking at the wrong area 
and accidentally giving the robot the wrong instructions, so I found 
myself checking in on the robot’s progress less than with the other 
techniques.” 

This suggests that although simple heuristics can be used to 
create intuitive implicit task allocation techniques, users still pre-
fer to have additional control over how they operate through ex-
plicit mechanisms. For instance, mechanisms could allow users 
to control the size of the regions created by their gaze or object 
manipulations. Other mechanisms could allow the user to pause 
territory creation so that they can monitor the robot’s progress 
or move objects around the table without unintentionally trig-
gering new territories. This fnding lends further support that 
mixed-initiative task allocation may be the way forward for ad-hoc 
HRC [2]. 

7.3 Further Enhancing HRC 
The proposed allocation techniques are an initial step towards en-
abling more natural human-robot collaboration, but there is room 
for further enhancement. We think that HRC augmented by digital 
tabletops and mixed reality holds signifcant promise, and our VR 
simulation explored the ways in which the collaboration can be 
enhanced, such as with visual indicators when task allocation oc-
curs or through visual heatmaps of territories. These visualization 
elements could be deployed through an overhead projector [10, 35], 

handheld devices [7], or HMDs [43] in real-world HRC tasks. There 
are additional elements that could be useful for HRC tasks, such 
as being able to visualize the queue of objects that will be worked 
on by the robot. We implemented an early version of this mecha-
nism where objects are highlighted on the table in shades of colors 
signifying the order in which they will be handled. It could also 
be benefcial to visualize which objects the robot is considering 
allocating when using an implicit technique. As an example, with 
the distance technique, the user could see the next few objects the 
robot will allocate if the objects on the table remain in their current 
positions. Beyond visualization aids, users could also beneft from 
additional automation in task allocation. For example, the robot 
could infer from a set of object allocations what the user might 
allocate next, akin to an autocomplete function. The robot could 
also learn users’ allocation preferences during the task or upon 
working with them over multiple sessions. Finally, our proposed 
design space served as groundwork for our explored techniques 
but is not meant to be exhaustive. Future work could consider addi-
tional factors which could reveal new allocation techniques yet to 
be explored. 

7.4 Future Work 
There are many promising directions to advance this work. We 
opted for a VR approach partly due to the constraints of conducting 
in-person studies during the pandemic. However, this work was a 
design exploration of task allocation techniques, which beneftted 
from the ability to rapidly prototype and ideate beyond the con-
straints of today’s technology. We acknowledge that some of VR’s 
inherent limitations such as the loss of physicality from the lack of 
haptic feedback when grabbing objects or the low feld of view may 
limit some of our fndings or may have infuenced the techniques 
that we proposed. Still, VR has shown promise as a prototyping 
and validation methodology for HRC and HRI [4, 6] and future 
work can provide guidance on when it can be used. Conducting 
this study outside VR to assess if the techniques are technically 
feasible and to determine whether the results generalize to real-life 
interaction with robots could be benefcial. 

An immediate extension of this work is how one might design 
useful explicit mechanisms for implicit allocation techniques to 
enhance controllability without compromising their parallelization 
potential. Task allocation is also meaningful in contexts where there 
are groups of humans and robots but would require adapting the 
proposed techniques which is an interesting challenge. This work 
assumes that the robot knows where to place objects upon picking 
them up, though the goal state may not be known a priori or be 
hard to specify until execution in many tasks. This leaves an open 
question about how the user can communicate goal information to 
the robot in real-time. Further, we assume that the robot is equally 
capable of picking up and placing objects as a human but changing 
this balance can alter how the techniques perform. We also noticed 
that users had richer interactions with the blocks than the robot. 
This suggests future possibilities to incorporate similar interaction 
capabilities to aid the robot during collaboration, such as the ability 
to push multiple blocks to assign them to a human. Lastly, the scope 
of this work was tabletop HRC but the coordination behaviors we 
borrow from can be equally applied to other HRC contexts such as 
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those where teams of humans and mobile robots work together in 
a warehouse. 

8 CONCLUSION 
Ad-hoc HRC poses a challenge in terms of ensuring that the robot 
can contribute to task completion as an equal partner. We have 
proposed a design space of task allocation techniques that provide 
users with the ability to assign objects to the robot in real-time. 
Several of the techniques were inspired by coordination behaviors 
that human teams utilize in collaboration. The evaluation suggests 
that the techniques were generally well received, with implicit 
techniques lowering user burden by making the robot proactively 
seek task allocation, though they can be enhanced to promote 
greater control over robot proactivity. We hope that this work 
inspires signifcant eforts into the design of intuitive task allocation 
techniques for ad-hoc HRC. 
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