ImagelnThat: Manipulating Images to
Convey User Instructions to Robots

Karthik Mahadevan
Department of Computer Science
University of Toronto
Toronto, Canada
karthikm @dgp.toronto.edu

Bilge Mutlu
Department of Computer Sciences
University of Wisconsin-Madison
Madison, USA
bilge @cs.wisc.edu

Abstract—Foundation models are rapidly improving the ca-
pability of robots in performing everyday tasks autonomously
such as meal preparation, yet robots will still need to be
instructed by humans due to model performance, the difficulty
of capturing user preferences, and the need for user agency.
Robots can be instructed using various methods—natural lan-
guage conveys immediate instructions but can be abstract or
ambiguous, whereas end-user programming supports longer-
horizon tasks but interfaces face difficulties in capturing user
intent. In this work, we propose using direct manipulation
of images as an alternative paradigm to instruct robots, and
introduce a specific instantiation called ImagelnThat which allows
users to perform direct manipulation on images in a timeline-style
interface to generate robot instructions. Through a user study,
we demonstrate the efficacy of ImageInThat to instruct robots in
kitchen manipulation tasks, comparing it to a text-based natural
language instruction method. The results show that participants
were faster with ImageInThat and preferred to use it over the
text-based method. Supplementary material including code can
be found at: https://image-in-that.github.io/.

Index Terms—end-user robot programming, direct manipula-
tion, robot instruction following

I. INTRODUCTION

Advances in foundation models are rapidly improving the
capabilities of autonomous robots, bringing us closer to robots
entering our homes where they can complete everyday tasks.
However, the need for human instructions will persist—
whether due to limitations in robot policies, models trained on
internet-scale data that may not capture the specifics of users’
environments or preferences, or simply the desire for users
to maintain control over their robots’ actions. For instance, a
robot asked to wash dishes might follow a standard cleaning
routine—e. g., by placing everything in the dishwasher and then
putting them away in the cupboard—but may not respect a
user’s preferences—e.g., needing to wash delicate glasses “by
hand” or organizing cleaned dishes in a specific way—thus
necessitating human intervention.

Blaine Lewis
Department of Computer Science
University of Toronto
Toronto, Canada
blaine @dgp.toronto.edu

Anthony Tang
School of Computing & Information Systems
Singapore Management University
Singapore, Singapore
tonyt@smu.edu.sg

Jiannan Li
School of Computing & Information Systems
Singapore Management University
Singapore, Singapore
jiannanli@smu.edu.sg

Tovi Grossman
Department of Computer Science
University of Toronto
Toronto, Canada
tovi@dgp.toronto.edu

User instructs robot through direct manipulation

Fig. 1. We introduce a new paradigm for instructing robots through the
direct manipulation of images. ImagelnThat is a specific instantiation of this
paradigm where users can manipulate images in a timeline-style interface to
create instructions for the robot to execute.

Existing methods for instructing robots range from those
that focus on commanding the robot for the purpose of
immediate execution (e.g., uttering a language instruction
to wash glasses by hand [1]) to methods that program the
robot such as learning from demonstration [2] or end-user
robot programming [3[]. However, prior methods, whether
they are used for commanding or programming, have notable
drawbacks. Using language to command a robot can be quick
and generate an immediate execution from the robot, although
language can be abstract and difficult to ground in the robot’s
environment. For instance, the command “put away the dishes
in the cabinets after cleaning them” is ambiguous if there
are dishes of different types, each needing to be placed in
different areas of the same cabinet or in entirely different
cabinets. In contrast, end-user programming promotes the
creation of reusable programs for repeated execution, yet it
remains challenging to capture user intents [3].

In this paper, we propose directly manipulating images on a
visual interface as a means of instructing a robot. By images,

https://image-in-that.github.io/

we mean a visual observation of the robot’s environment
captured by a camera attached to the robot or the environment.
Akin to how cleaning robots today present a 2D visual map of
their surroundings, we envision future robots offering access
to image observations of the robot’s environment. Compared
to prior methods for instructing robots, images are easy
to interpret, even for longer horizon tasks, since they are
already grounded in the robot’s environment. Moreover, direct
manipulation [4] inherently reduces ambiguity, as actions such
as manipulating an object within the image eliminate the
need for descriptive instructions [5]. We introduce a specific
instantiation of this paradigm, ImagelnThat, which combines
many state-of-the-art foundation models, and enables users
to manipulate images of the robot’s environment to create
instructions. ImagelnThat integrates several techniques:

o Direct manipulation of objects and fixtures to create
instructions;

o A timeline interface for ordering instructions and assess-
ing whether the shown changes achieve them,;

o Highlighting changes between instructions using visual-
ization methods to help users interpret changes;

o Language-based image editing to leverage the strengths
of language to visualize instructions;

o Automatic captioning of user manipulations with text to
enhance confidence about the robot’s understanding of
instructions;

e Predicting and proposing future instructions based on
contextual interpretation of user actions.

In a user study with ten participants, we compared Im-
agelnThat to a language-based method for four instruction-
following tasks in simulated kitchen environments. We found
that participants were able to generate instructions in these
tasks faster (64.8% less time) when using ImagelnThat, and
participants were more confident that their instructions could
be understood by a robot when they directly manipulated
images to provide instructions. We further demonstrate that
image-based instructions created using ImagelnThat can be
translated and executed on a physical robot arm through a
case study. By enabling the creation of intuitive, image-based
instructions, ImagelnThat addresses a key HRI challenge [6]]:
facilitating effective information exchange between humans
and robots. Our method allows users to directly manipulate
images to convey intent, with the robot implicitly communi-
cating its understanding of the user’s intent by enabling these
image manipulations. This work advances the state-of-the-art
by making the following contributions:

o An alternative paradigm of instructing robots enabled by
the direct manipulation of images on a visual interface;

« An instantiation of this paradigm, ImagelnThat, realized
through a novel prototype;

o Results of a user evaluation comparing ImagelnThat to
an instance of a language-based method;

o Early demonstrations that user-generated images can be
translated into robot actions.

II. BACKGROUND

Prior robotics literature has proposed several paradigms
using which humans can instruct robots. Broadly, these can
be categorized as commands—instructions that are provided and
executed in the moment, and programs—structured instructions
that can be repeated in an automated fashion. Regardless of
whether a robot is instructed through commands or a program,
instructions require four major components: (1) capturing
user intent, (2) translating that intent into a command or
program, (3) presenting the command or program to the user
for confirmation or feedback, and (4) executing the instruction.

Continuous commands. Commands can be issued in real-
time or near real-time (referred to as control in the robotics
literature) and involve continuous input from the user through
teleoperation, for which several methods exist. Since continu-
ous commands are typically executed in real-time, there is of-
ten no explicit notion of presenting user intent for confirmation
or feedback (3), For instance, when using a physical device
for teleoperation [7]], [8]], manipulating the device captures user
intent to provide specific changes (deltas) to the robot’s end
effector pose or joint configuration, whereas execution occurs
immediately through low-level controllers [9], [[10]. The user
gets feedback implicitly but in real time while the robot
executes the command—by either observing the robot after ex-
ecuting a command physically [11] or visually during remote
teleoperation [12[]-[14]. In contrast, graphical user interfaces
often provide the user feedback prior to execution, such as
by visualizing valid commands [15]-[17], virtual surrogates
that can be manipulated instead of the real robot [18]-[20],
or visualizing and manipulating a 3D rendering of the robot’s
environment in 3D [21], [22].

Discrete commands. Other methods of issuing commands
provide a layer of abstraction to reduce the user burden
of having to provide continuous input. For instance, users
can create instructions through natural language which are
executed immediately [[1], [23], [24]. Although this abstraction
provides the opportunity for user feedback, it is often not
utilized and the user interface is simply the language used (e.g.,
natural language). Some recent work provides the opportunity
for user intervention via language as an interface, such as
where the robot engages in a dialogue to clarify instruction
ambiguities [25]], requests user help [26], or lets the user
provide iterative language corrections [27], [28]. From an
execution standpoint, discrete commands such as those that
are language-based can be executed by pretrained general-
purpose large language models (LLMs) that translate them into
policy code [29]—[32] or in an end-to-end fashion using trained
special-purpose robot foundation models that map language to
robot actions [1]], [33]-[35].

Programs. Prior work has proposed methods to create
instructions for longer-horizon tasks in a repeatable manner,
and employ a variety of instruction representations. Graphical
programming representations, such as blocks [36[]-[38] and
nodes [|39]], [40]], are often used in end-user robot programming
(EURP) systems. Other approaches utilize augmented real-

ity [19], [41]-[44], sketching [45]], [46], and tangibles [47]—

[49]. Recently, LLMs have been employed to enable the use
of freeform natural language to create text-based programs
using chat interfaces [50], [51]. The creation step of a program
involves defining the step-by-step procedure of the robot’s
behavior, for instance by dragging-and-dropping individual
blocks in a visual editor [36].

Since EURP is typically done offline, most systems enable
the user to provide confirmation to the system and gather
feedback using a given representation. For instance, blocks
in a program can be viewed in a visual editor whereas other
methods contextualize the program such as with augmented
visualizations on a tabletop [48], or mapping the robot’s
environment within the editor [53]. This helps track the robot’s
future states and identify possible errors. Beyond viewing and
confirmation steps, most EURP systems support editing in-
structions natively. Programs are often executed using classical
methods such as motion planning or program synthe-
sis [54]. However, LLMs have also recently been employed to
generate code from a program [50].

Our work does not distinctively fit into either paradigm,
but borrows from and has applicability to both. We also
utilize an instruction representation, namely, images, which
has been less explored for instructing robots, particularly for
the end user. Using images as a representation offers several
benefits. Instructions can be created quickly through direct
manipulation, is concrete by nature (since manipulation occurs
on a specific object of interest), and reduces ambiguities that
are inherent to other methods (e.g., language). This approach
can be used to command a robot in near real time (akin to
language). Further, because images are concrete, they can help
the user in tracking the robot’s state over time. Hence, it can
support the creation of procedures for longer-horizon tasks as
with programming. Lastly, using images as a representation
supports flexible execution, such as by translating images to
robot policy code (which we demonstrate in this work),
and potentially translating images into language captions for
execution through language-conditioned policies [35]], or im-
mediately used via goal image-conditioned policies [34].

III. IMAGE MANIPULATION THROUGH IMAGEINTHAT

We introduce manipulating images as a new way to instruct
robots. Here, we describe the interactions that a user can have
with ImagelnThat, a prototype instantiation of this concept.
To enable these interactions, ImagelnThat assumes that there
will be a setup phase where the robot builds an internal rep-
resentation of the user’s environment in which it will operate.
This representation consists of knowledge about objects and
fixtures. Objects are items that can be manipulated from one
location to another (e.g., bowls that need washing) whereas
fixtures are items that are immovable. Both objects and fixtures
can be in more than one state; for example, a cabinet is a
fixture that can be open or closed. Throughout our description
of the ImageInThat system, we will use an example of how a
user might have their robot put an orange inside a bowl and put

Fig. 2. ImagelnThat’s user interface, consisting of an editor (top) and a
timeline (bottom). The editor (A) allows users to manipulate objects and
fixtures in the environment, while the timeline displays the current state of the
environment and the desired changes. The timeline (B) shows all instructions
provided to the robot. Selecting a step populates it in the editor. Changes
between steps are made visible by contrasting changed objects and fixtures
from other items (C). ImagelnThat automatically captions all manipulations
and allows them to be edited (D). The user can instruct the robot with text to
generate new steps automatically (E). ImagelnThat tries to predict user goals
such as by proposing locations where objects can be placed (F) or proposing
future steps (G).

it inside the cabinet by utilizing ImagelnThat. To support the
creation of new instructions, ImagelnThat includes an editor.

Direct manipulation to interact with objects and fix-
tures (Figure 2A). In the ImagelnThat interface, the user
can perform simple drag-and-drop operations in the editor to
manipulate their locations upon selecting them. The user can
also change the order in which objects appear by right clicking
them. They can toggle the state of fixtures by clicking on them
if they take on a discrete number of states. In the example
of putting a bowl with an orange inside it in the cabinet,
the task can be decomposed this into three steps: (1) put the
orange in a bowl; (2) place the bowl inside the cabinet; and
(3) close the cabinet. In ImagelnThat, specifying each of these
steps is achieved by performing clicking to toggle between the
fixture’s states (opening and closing the cabinet) and drag-
and-drop operations (moving the bowl). This concreteness is
in contrast to prior methods for instructing robots that can
inherently contain ambiguities.

Timeline to interpret the continually changing environ-
ment (Figure 2B). ImagelnThat provides a visual timeline to
help the user anchor and understand their instructions to the
robot in the context of the continually changing environment.
This is especially useful for longer-horizon tasks. When the
user opens the interface, the initial state of the environment is
pre-populated in the timeline. This serves as the starting point
for all instructions for the robot, and future steps represent
changes from this initial step. Each step in the timeline is
displayed from left to right (temporally) as small thumbnail
images. When the user selects a step, it becomes populated

inside the editor and available to be modified. Each time
the user toggles the state of a fixture by clicking it, a new
step is inserted after the current step in the timeline. In a
similar manner, every time the user performs a drag-and-
drop manipulation on a new object, the timeline is populated
with a new step. Continuously manipulating the same object
allows the user to refine the object’s position without creating
unnecessary steps. Sometimes, a set of instructions might
involve the same object moving in the environment, such as
when a dirty bowl needs to be taken from the counter and
rinsed under running water before being placed inside a sink.
To support creating such instructions, the user can copy a step
from the timeline by selecting a button that appears under
the step. They can also delete steps using a button under the
step. The timeline highlights another benefit of images—the
ability to visually track how the robot will manipulate the
environment to perform instructions rather than imagining it.

Visually highlighting changes. Since images are infor-
mation dense, and the timeline can hold many images at a
time, naively placing images in the timeline may not help
the user visually track their instructions over time. To assist
this, ImagelnThat utilizes two visualizations. First, each time
a step is populated in the timeline, ImagelnThat’s internal
representation maintains a log of changes between consecutive
steps. When an object is moved between consecutive steps, it
is visually highlighted while all other objects and fixtures are
made less salient (Figure 2[C). In contrast, when a fixture’s
state changes, the environment is made more visible (where
the fixture is located) by keeping it at full opacity and making
all objects less visible. This allows users to quickly scan the
timeline and gauge what has changed at each step. When a step
is selected, hovering over any previous or future step displays
the difference through an animation, showing any changes in
object positions and fixture states.

Blending language and image. Image manipulation has the
benefit of being concrete. For instance, the manipulation of
individual objects may cause them to move to a new location.
As an example, the user may wish to put an orange into
the bowl. However, since direct manipulation only lets the
user move the orange on top of the bowl (as there is no
way for it to be put “inside” without simulating physics),
the user may be unsure whether the robot has understood
their instruction. ImagelnThat automatically annotates each
step using a caption (Figure 2D). Captions describe the change
between the current step and the previous step. A caption for
moving the orange might read, “Move the orange from
the counter into the bowl.” By default, an image
and its corresponding caption within the same step are linked
together. Hence, any changes manually made to the caption
will also modify the image.

There are also many situations where the user has a higher-
level goal (e.g., doing the dishes) but either does not know
the sequence of steps needed to achieve the goal or does not
want to specify them by hand. ImagelnThat allows the user
to input a language instruction when a step is selected and

populated in the editor (Figure 2F). Depending on the speci-

ficity of the instruction, one or many steps, each containing
an image describing the change, are automatically generated
and populated in the timeline.

Predicting user goals. Guided by the initial setup phase,
ImagelnThat determines the locations of all objects and fix-
tures. It uses this knowledge to propose goal locations for a
selected object (Figure 2F). For instance, when the user selects
the orange, ImagelnThat could propose placing it inside the
sink (for washing before use) or inside the bowl (for storing).
These choices are visualized as lines originating from the
selected object. Selecting any part of the line performs the
manipulation for the user instead of requiring a drag-and-
drop operation. ImagelnThat keeps track of all steps that are
populated in the timeline. It uses the contextual information
embedded in the timeline to predict what the user might want
to do, and proposes these as plausible next steps (Figure 2|G)
that the user can choose between (e.g., two options). Selecting
a plausible step adds it to the timeline while allowing the user
to reject one or all plausible steps.

IV. IMPLEMENTATION

High-level system design. Two versions of ImagelnThat
were developed: a simulated (Sim) version for the user study
and a version to demonstrate real-world usage (). Im-
agelnThat consists of two major components: (1) a back-
end server that manages machine learning models to generate
the image representations for user manipulation and enables
features such as automatic captioning, and (2) a user interface
for viewing and editing the images, enabling users to create
robot instructions. The server is realized as a Flask application
that enables two-way communication between the models and
the interface. The models are hosted as TCP sockets on a
workstation (with an Nvidia RTX A6000) within the local
network and communicate with the Flask server to respond to
requests from the interface. The user interface is built using
React]S. To populate the interface, Sim utilizes images from
kitchen environments created using Robocasa [55] whereas

uses streamed camera images. ImagelnThat uses GPT-40
(gpt-40-2024-05-13) as the large-language-model (LLM) for
producing captions, enabling language-based image edits, and
predicting user goals (see Appendices). ImagelnThat creates
an initial representation of the robot’s environment by extract-
ing information about the objects and fixtures. Sim assumes
access to a predefined list of plausible objects and fixtures
whereas prompts the LLM with the robot’s observation
to generate the list of plausible objects and fixtures. However,
fixture states are predefined (e.g., a drawer being able to open
or close) though they could be inferred through automated
methods (e.g., [56]—[58]).

Creating the initial representation for user manipula-
tion. In ImagelnThat, fixture states are realized as background
images while object masks are overlaid on top of them. Each
combination of states is used to generate an image representing
the environment in that state. For example, in a kitchen
environment with a drawer and a cabinet, one possible state
is the drawer being open while the cabinet remains closed.

Preprocessing Features

‘ Finding objects & fixtures ‘ [Autocaptioning (LLM)] ‘ Autocomplete (LLM) } [Language—to—image (LLM)]

‘ Object detection (OwLv2) l

Masking objects (SAM) J
‘ Generate fixture states

[Inpainting background (LaMa) l

Goal location autocomplete (LLM) ‘

- Execution ﬁ
> [Interface (ReactJs) —_— Robot

Fig. 3. System diagram of ImagelnThat showing its major components.
The server side (in purple) handles the preprocessing step and all intelligent
features that require interfacing with the LLM (e.g., autocomplete, captioning,
and language-to-step generation). The client is a web user interface built with
React]S. Components in white are implemented differently for the user study
and real-world usage.

In Sim, the background images are generated by API calls to
Robocasa to modify the fixtures aided by generated code from
the LLM whilst hiding all objects whereas in , images
representing different states are captured a priori. We argue
that this is a reasonable assumption given that many existing
robot applications assume the existence of digital twins [59].
We also experimented with fine-tuning language-conditioned
diffusion models [[60], [61] to generate images where fixtures
change state using a language prompt for environments that do
not have a digital twin (Figure 4). For these environments, the
parts of the background behind the objects are reconstructed
using inpainting techniques [62].

To enable direct manipulation, ImagelnThat must identify
and create masks for objects. Using the list of plausible objects
and fixtures, an open vocabulary object detector (OwLv2 [[63]])
finds the corresponding bounding boxes. Objects’ bound-
ing boxes are then processed using Segment Anything [64]]
to generate masks. In , inpainting is used to fill the
background behind detected objects. For detected fixtures,
ImagelnThat generates interactable regions using the bounding
boxes produced by the object detector, enabling mouse clicks
within these regions to activate state changes. For the study
(Sim), the fixtures’ bounding boxes were pre-determined.

Initializing the environment. After generating the back-
grounds and representing objects and fixtures, the server
transmits an environment object and the initial state to the
user interface. The environment object represents all static
aspects of the robot’s environment, including all objects plus
their bounding boxes, fixtures with their bounding boxes and
their possible states, and the backgrounds corresponding to
all fixture state combinations. The initial state describes the
initial location of all objects (i.e., x and y position) and the
states of all fixtures. The user interface renders the initial
state of the environment as a step in the timeline through an
SVG image. In the initial state, object order is determined
by prompting the LLM, whereby receptacles (e.g., bowls)
are behind other objects (e.g., fruits). Once the environment
is populated, the user can interact with the environment by
manipulating objects and fixtures. When the user interacts

with the environment, new environment states are created (or
existing states are updated) to track the locations and states
of the fixtures, which subsequently adds new visual steps to
the timeline. Changes between steps are displayed by applying
filters to the difference between their environment states.

Blending language and image. Each time a new step
is created with a drag-and-drop manipulation, the LLM is
prompted with data about the environment, environment states
at each step, and the corresponding images to generate a
caption. For fixture state changes, captions are created simply
by appending the type and state.

When the user enters a language instruction while a step
is selected, the data about the environment, the corresponding
environment state, and the corresponding image are used to
prompt the LLM to classify the instruction as either requiring
a fixture state change or an object manipulation. Depending
on the result, a subsequent call is made to the LLM to either
produce an updated list of fixture states, or manipulate the
2D coordinates of the corresponding object(s). Editing a step’s
caption produces an updated step using the same approach. By
default, just a single step is created with the user’s instruction.
ImagelnThat also supports adding more abstract instructions
(e.g., wash the dishes) that can be further broken down into
smaller instructions, each producing a step. Although the
current implementation uses an LLM for manipulating items
in each step, fine-tuned language condition diffusion models
could also be used (e.g., [Figure 4).

Predicting user goals. During pre-processing, the LLM is
prompted to filter which objects in the environment can be
manipulated by the robot, and all the locations they could be
placed. This is used to propose goal locations when the user
selects an object as a form of autocomplete. Lastly, to propose
plausible steps, the user can press a button near the editor to
prompt the LLM with the environment plus all environment
states corresponding to all steps until the selected step as well
as the corresponding images, with the goal of generating any
number of plausible actions (a system parameter) based on the
robot’s existing skills and the sequence of steps in the timeline.
Each action prompt is then used to generate a plausible step
and shown to the user to select or reject; if selected, the step
is added to the timeline.

System requirements and latency. In ImagelnThat, hosting
large models requires significant VRAM, with the fine-tuned
diffusion model being the most demanding. Preprocessing can
require minutes, including background generation per fixture
state, object detection, and mask extraction. Inpainting and
determining object goal locations requires a few seconds due
to LLM calls and modifying the background image per mask
respectively. After preprocessing, interactions occur in real-
time. Automatic captioning runs in the background, while
image editing through language and proposing plausible steps
require longer (tens of seconds), involving multiple LLM calls.

V. EVALUATION

We evaluated ImagelnThat through a user study conducted
in a laboratory with ten participants recruited using university

o
Faucet opened

Cabinet opened Cabinet closed Faucet closed

Fig. 4. Sampled results of providing a language instruction to a fine-tuned
language-conditioned diffusion model to modify fixture states. In each pair
of images, the left represents the initial image and the right represents the
generated image.

and professional networks (M = 25.9 years, SD = 3.38
years; 5 women, 5 men) who rated their familiarity with
providing instructions to a robot on a seven-point Likert scale
(M =4.1, 5D = 2.1). In the study, we compared an instance
of ImageInThat with a language-based method.

Conditions. To allow a comparison of each modality, we
omitted all the language features of ImagelnThat, including
the ability to generate new images using language instructions
or modify them using captions. For the language condition,
we re-purposed ImagelnThat, replacing all image-based inter-
actions with text. Instead of populating images in the timeline,
the user populates the timeline with textual descriptions of task
steps. In both conditions, participants provided instructions
pertaining to one object at a time, reflecting the current
capabilities of robots, which is typically limited to single-
object manipulation. Further, most language-conditioned robot
policies (e.g., [35]) follow a similar approach, executing single
language instructions at a time.

Study design and tasks. The study utilizes a within-
subjects design with two conditions, image and fext, that are
presented in a counterbalanced order to minimize ordering
effects. Within each condition, participants completed four
tasks where they instructed a robot to complete kitchen manip-
ulation tasks. The tasks ranged in difficulty from easy to hard:
storing pantry, sorting fruits, cooking stir-fry, and washing
dishes. The tasks where chosen to assess different types of
instruction following including: specifying individual objects
when there may be duplicates (e.g., an apple on the counter
versus one inside a bowl), spatial constraints when placing
objects (e.g., placing an onion to the left of a big potato),
dealing with occluded objects (e.g., removing a large oil bottle

Fig. 5. Tasks performed by participants in the evaluation (left to right): or-
ganizing pantry, sorting fruits, cooking stir-fry, and washing dishes. Depicted
here is the environment state at the beginning of each task.

which is blocking the olive oil bottle that needs to be used),
and lastly, keeping track of object locations and context as
they undergo various manipulations (e.g., taking food off of a
dirty plate, washing it, and storing it in the cabinet). Within
each condition, the four tasks were assigned in random order.
After both condition blocks, participants completed a freeform
task to experiment with the features that were excluded from
ImageInThat. Further details can be found in the Appendices.

Measures. In the study, we collected data on participants’
performance when using both methods. Quantitative measures
include task completion time and number of errors. An oracle
representation of each task was created by two experimenters a
priori representing the best possible performance on the task
(with the correct instructions) and used to compare partici-
pants’ performance. An error was recorded if: a participant
missed a step included in the oracle; there was an extraneous
step that was not seen in the oracle; or if a step from
the oracle was inefficiently broken into multiple steps by
the participant. We also measured subjective perceptions of
the prototypes, including participants’ confidence in correctly
communicating their intent to the robot, workload through the
NASA TLX questionnaire [65], and system usability (with the
System Usability Scale which includes 10 items on a five-point
scale). Due to data corruption, one task from Participant 2
and one task from Participant 7 were omitted from the analysis,

Procedure. Participants first provided consent and com-
pleted a pre-study questionnaire assessing their familiarity
with robots and instructing them. After watching a video
tutorial introducing ImagelnThat and the text-based method,
and briefly experimenting with both, participants began one
of the two study condition blocks. Between tasks, participants
rated how confident they were that the robot could understand
their instructions unambiguously on a seven-point Likert scale.
At the end of each condition block, two questionnaires (NASA
TLX and SUS) were administered to assess workload and
usability, respectively. At the end of the study, participants
rated their preference for the text-based method compared
to ImagelnThat on a seven-point Likert scale. Lastly, we
conducted a brief interview probing participants about various
aspects of both methods.

Hypotheses. We formulated three hypotheses: Participants
will complete tasks faster using ImagelnThat compared to
the text-based method (H1); Participants will make fewer
errors using ImagelnThat compared to the text-based method
(H2); and Participants will feel more confident that a robot
unambiguously understands their instructions when using Im-
agelnThat compared to the text-based method (H3). To test
these hypotheses, we used a paired t-test for all metrics to
account for repeated measures.

Findings from measures of performance. |Fig 6
provides a breakdown of participants’ completion
time by condition and task. Participants were faster
(t(37) = —8.96,p < 0.001) with ImagelnThat (M = 110.8
seconds, SD = 70.04 seconds) compared to the text-based
method (M = 363.88 seconds, SD = 186.45 seconds).

Findings from measures of error. Overall there was

5007 @ ImagelnThat

Time Spent On Task (s)
Likert Scale Responses 3

0 1 Sorting Storing Cooking Dishes Al o 2

2 3 i 6
Count Task Count

Fig. 6. Left: a plot showing the number of errors for ImagelnThat and the
text-based method. Errors are grouped into three categories: extraneous steps,
missing steps, and inefficient steps, and a bar displays the total count of all
errors. Middle: shows the task completion time per task and all tasks together.
All error bars are bootstrapped 95% confidence intervals. Right: shows counts
of responses for the NASA-TLX questionnaire.

no significant difference in errors (¢(37) = —0.76,p > 0.05);
however using ImagelnThat (M = 2.26, SD = 3.07) led
to slightly fewer errors than the text-based method (M =
2.55, SD = 3.02). The breakdown of errors suggests the
text-based method had more (¢(37) = —2.43,p < 0.05) miss-
ing steps (M = 2.0, SD = 2.11) than ImagelnThat
(M = 126, SD = 1.98). However, there was no dif-
ference (¢(37) =1.35,p > 0.05) in extraneous steps between
ImagelnThat (M = 0.29, SD = 0.61) and the text-based
method (M = 0.26, SD = 0.79). There was also no
significant difference (¢(37) = 1.35,p > 0.05) between the text-
based method (M = 0.26, SD = 0.79) and ImagelnThat
(M =0.29, SD = 0.61) with respect to inefficient steps.
Findings from subjective measures. Participants felt more
confident (¢(37) = 5.63,p < 0.001) that their instructions would
be understood unambiguously by a robot when using the
ImagelnThat (M = 6.42, SD = 0.92) versus the text-based
method (M = 4.71, SD = 1.75). When comparing system us-
ability, ImagelnThat received a higher (¢(9) = 5.75,p < 0.001)
average score (M = 87.75, SD = 14.16) than the text-
based method (M = 61.75, SD = 23.07). Based on these
scores, ImagelnThat can be interpreted as having “excellent”
usability while the text-based method would be classified as
having “marginal” usability. Lastly, participants reported a
lower workload on the NASA TLX when using ImagelnThat

compared to the text-based method (Figure 6).
VI. TRANSLATING IMAGES TO ROBOT ACTIONS

Once the user has specified their instructions through the
direct manipulation of images, the robot must be able to
execute them, This could be accomplished in several ways.
In this work, we illustrate a case study of translating images
into policy code (akin to code as policies [29] but with both
text and image). We attempted image-to-code translation with
4 tasks. In our assessment, we provide a few pre-defined skill
primitives as code APIs to prompt an LLM (gpt-40-2024-
05-13): pick, place, grasp, ungrasp, turn on faucet, turn off
faucet, and stack object. In these tasks, we prompt the LLM ten
times and focus on translation performance, as execution per-
formance is influenced by factors like robot perception (e.g.,
point cloud quality) and hardware limitations. The prompt to
the LLM included: predefined APIs, images corresponding to
the sequence of steps (without their associated captions), and

Place the soda bottle on the
green tray in the center of the
table.

¢ Translate image to code (LLM)

pick(“soda_bottle”)

place(“tray”)

i

Fig. 7. We attempted to translate the images generated using ImagelnThat to
execute the underlying instructions. One such method for translation is from
image to code that utilizes skill primitives by prompting an LLM. Illustrated
here is one execution of the instructions.

data about the environment and the environment states (as
processed by ImagelnThat).

The first task (easy) required the robot to put a red apple into
a white bowl in a table featuring a bowl, two green apples and
a red apple (like[Figure T)). Here, the translation was successful
10 out of 10 times. The second task (medium) required the
robot to put both green applies into the white bowl and the
red apple into the bowl with the pattern. This translation was
also successful 10 out of 10 times. The third task (medium)
required the robot to put a bowl in the sink, place an orange
inside it, and wash the fruit by turning on the faucet (similar
to the setup in [Figure 2)). This task was successful 8 out of
10 times, but in 6 runs the translation incorrectly moved the
second orange into the second bowl as well though without
moving it to the sink or washing it. In the fourth task (hard),
we used part of the fourth evaluation task whereby
the robot needed to stack the orange donut on the plate
containing the pink donut. The translation succeeded 7 out
of 10 times, but in 3 runs, it mistakenly included code to
rearrange spoons. In the latter two tasks, we noticed that the
code often often defaulted to the “1st” item when there were
duplicates (e.g., “plate 17), struggling to distinguish between
similar objects, and extra code was often included based on
incorrectly detecting state changes, highlighting the challenges
VLMs face in handling many objects, duplicate objects, and
subtle state changes.

Lastly, we illustrate through a case study that our approach
can be realized to perform robot manipulation. In our pipeline,
the pick primitive is executed by finding the desired object
using OwLv2 [63]], which is used to find a mask and create
an object pointcloud [64]. Then, we sample candidate grasps
using Contact-GraspNet [67]. The place primitive takes a
string description of an object and uses OwLv2 to find and
return a pose for the robot to drop off the item. [Figure 7
shows a sample execution using this approach.

VII. DISCUSSION

Contextualizing the performance of ImagelnThat. The
results of our user study suggest that ImagelnThat led to faster

completion of the instruction giving tasks with fewer errors.
Specifically, participants had more missing steps when they
used the text-based method. One rationale could be that images
support keeping track of the environment state over longer-
horizon tasks so they were less likely to miss a step, However,
participants included more extraneous steps (i.e., steps that do
not contribute to the goal) possibly due to the low cost of
adding new instructions afforded by direct manipulation.

Several factors could have led to participants spending
significantly more time and effort giving instructions in lan-
guage. We noticed that the additional cost of using the text-
only method were more pronounced in resolving ambigui-
ties, such as when referencing specific objects or achieving
precise object placement. P9 commented, “The text interface
was incredibly cumbersome. The room for ambiguity in the
instructions made it so that each step required a lot of mental
processing to remove any ambiguities in my instruction”. Par-
ticipants often used complex expressions to distinguish similar
objects, whereas with ImagelnThat they could manipulate the
target object directly. Similarly, participants often constructed
complex sentences to specify object placement. Participants
also reported challenges in correcting errors once multiple
steps were in the timeline, as it required them to “create
a series (of new instructions).” (P4). Participants noted the
increased cognitive effort in reasoning about and creating
plans for longer tasks using text. Specific issues included
the difficulty in mentally tracking object locations and state
changes, which reduced their confidence in their instructions:
“I have to imagine what the result of this. It’s like playing
a game of blindfolded chess.” (P6). In contrast, participants
appreciated the immediate visual feedback from ImagelnThat.

Limitations and future work. Though we are encour-
aged by the findings that participants performed better with
ImagelnThat and preferred it, there are some caveats. First,
our comparison required participants to provide step-by-step
instructions for a robot when using the text-based method.
While this is how robots act on instructions, humans may
think at higher abstraction levels. Here, there is the potential
for LLMs to take a higher-level instruction and decompose it
into a sequence of lower-level instructions (e.g., [27]]) which
could make using language less cumbersome. Hence, we note
that the performance of ImagelnThat represents the best-case
scenario for the image manipulation paradigm and the worst-
case scenario for the text-based method (Figure 6). Further, we
represented language as text to enable comparisons via similar
2D user interfaces, but acknowledge that users may prefer
speaking to the robot. Future work should compare speech
to image-based methods. Our study findings are conditioned
on a small sample size of ten participants. Future work
should assess ImagelnThat with a larger participant pool on
more diverse, longer-horizon tasks beyond the kitchen domain.
Lastly, while we demonstrate the multimodal capabilities of
ImagelnThat, our evaluation focused separately on text-based
and image-based approaches, acknowledging the need to as-
sess their combined effectiveness.

Technical limitations also bound [ImagelnThat’s perfor-

mance particularly when deployed “in-the-wild” both for the
creation of instructions and their execution. This includes
detecting and masking objects reliably, especially when the
environment is cluttered, and the ability for vision language
models to perceive environment changes. For instance, when
editing in 2D, the issues of object perspective could affect
detection or recognition performance and require innovative
solutions. For translating images into policy code, small
changes can be difficult for vision language models to detect.
There are also challenges with discriminating which objects
are manipulated when there are identical objects.

Thus far, we focused on one-way interaction, i.e., the
initial provision of commands, but we can envision this
being extended to enable back-and-forth interaction between
the user and the robot such as for correcting manipulation
errors. Further, it would be interesting to explore whether user
interaction traces in ImagelnThat could help learn user patterns
and preferences, such as suggesting steps based on observed
behaviors like placing heavier dishes on lower shelves. Lastly,
we would like to assess other methods for translating image
instructions to robot actions such as robot foundation models
that condition on goal images when provided user-manipulated
images that contain scaling and perspective artifacts, as these
would likely fall outside their training distribution.

VIII. CONCLUSION

In this work, we proposed the direct manipulation of im-
ages as a new paradigm for robot instruction, and showed
its feasibility and capabilities through our prototype system,
ImageInThat. Through user studies comparing ImagelnThat
with a text-based baseline across four complex kitchen manip-
ulation tasks, we have shown that image manipulation enables
the quick specification of robot instructions with less effort and
workload. Through this work, we also took a step towards
future interfaces that blend image and language seamlessly,
leveraging the strengths of each modality. This multimodal
form of instruction could benefit users with differing capabil-
ities and needs. We hope that this inspires significant future
efforts into methods that support humans in instructing robots.

ACKNOWLEDGEMENT

This work was supported by the Natural Sciences and
Engineering Research Council of Canada IRCPJ-545100-18
grant, the National Science Foundation award IIS-1925043,
and the Singapore Ministry of Education AcRF Tier 1 23-
SIS-SMU-069 and 22-SIS-SMU-092 grants.

REFERENCES

[1] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch,
T. Armstrong, and P. Florence, “Interactive language: Talking to robots
in real time,” IEEE Robotics and Automation Letters, 2023.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469—483, 2009.

[3] G. Ajaykumar, M. Steele, and C.-M. Huang, “A survey on end-user robot
programming,” ACM Computing Surveys (CSUR), vol. 54, no. 8, pp.
1-36, 2021.

[4] B. Shneiderman, “Direct manipulation: A step beyond programming
languages,” Computer, vol. 16, no. 08, pp. 57-69, 1983.

[5]

[9]

[10]

(11]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

D. Masson, S. Malacria, G. Casiez, and D. Vogel, “Directgpt: A direct
manipulation interface to interact with large language models,” in Pro-
ceedings of the CHI Conference on Human Factors in Computing
Systems, 2024, pp. 1-16.

M. A. Goodrich, A. C. Schultz et al., “Human-robot interaction: a
survey,” Foundations and Trends® in Human—-Computer Interaction,
vol. 1, no. 3, pp. 203-275, 2008.

D. Gopinath, S. Jain, and B. D. Argall, “Human-in-the-loop optimization
of shared autonomy in assistive robotics,” IEEE robotics and automa-
tion letters, vol. 2, no. 1, pp. 247-254, 2016.

R. Temma, K. Takashima, K. Fujita, K. Sueda, and Y. Kitamura,
“Third-person piloting: Increasing situational awareness using a spatially
coupled second drone,” in Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology, 2019, pp.
507-519.

K. Darvish, L. Penco, J. Ramos, R. Cisneros, J. Pratt, E. Yoshida,
S. Ivaldi, and D. Pucci, “Teleoperation of humanoid robots: A survey,”
IEEE Transactions on Robotics, vol. 39, no. 3, pp. 1706-1727, 2023.
D. J. Rea and S. H. Seo, “Still not solved: A call for renewed focus on
user-centered teleoperation interfaces,” Frontiers in Robotics and Al
vol. 9, p. 704225, 2022.

D. Rakita, B. Mutlu, and M. Gleicher, “Effects of onset latency and robot
speed delays on mimicry-control teleoperation,” in HRI’20: Proceed-
ings of the 2020 ACM/IEEE International Conference on Human-
Robot Interaction, 2020.

D. Wei, B. Huang, and Q. Li, “Multi-view merging for robot teleop-
eration with virtual reality,” IEEE Robotics and Automation Letters,
vol. 6, no. 4, pp. 8537-8544, 2021.

A. Naceri, D. Mazzanti, J. Bimbo, D. Prattichizzo, D. G. Caldwell,
L. S. Mattos, and N. Deshpande, “Towards a virtual reality interface for
remote robotic teleoperation,” in 2019 19th International Conference
on Advanced Robotics (ICAR). IEEE, 2019, pp. 284-289.

D. Rakita, B. Mutlu, and M. Gleicher, “An autonomous dynamic camera
method for effective remote teleoperation,” in Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot Interaction,
2018, pp. 325-333.

D. Kent, C. Saldanha, and S. Chernova, “A comparison of remote robot
teleoperation interfaces for general object manipulation,” in Proceedings
of the 2017 ACM/IEEE international conference on human-robot
interaction, 2017, pp. 371-379.

J. Li, R. Balakrishnan, and T. Grossman, “Starhopper: A touch interface
for remote object-centric drone navigation,” in Proceedings of the
Graphics Interface Conference 2020, 2020.

E. Rosen, D. Whitney, E. Phillips, G. Chien, J. Tompkin, G. Konidaris,
and S. Tellex, “Communicating robot arm motion intent through mixed
reality head-mounted displays,” in Robotics research: The 18th inter-
national symposium ISRR. Springer, 2020, pp. 301-316.

M. E. Walker, H. Hedayati, and D. Szafir, “Robot teleoperation with
augmented reality virtual surrogates,” in 2019 14th ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI). IEEE,
2019, pp. 202-210.

C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. M. Van der Loos,
and E. Croft, “Robot programming through augmented trajectories in
augmented reality,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 1838-1844.
K. Mahadevan, Y. Chen, M. Cakmak, A. Tang, and T. Grossman,
“Mimic: In-situ recording and re-use of demonstrations to support robot
teleoperation,” in Proceedings of the 35th Annual ACM Symposium
on User Interface Software and Technology, 2022, pp. 1-13.

Y. Li, S. Agrawal, J.-S. Liu, S. K. Feiner, and S. Song, “Scene editing
as teleoperation: A case study in 6dof kit assembly,” in 2022 IEEE/RS]J
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 4773-4780.

S. Aoyama, J.-S. Liu, P. Wang, S. Jain, X. Wang, J. Xu, S. Song,
B. Tversky, and S. Feiner, “Asynchronously assigning, monitoring,
and managing assembly goals in virtual reality for high-level robot
teleoperation,” in 2024 IEEE Conference Virtual Reality and 3D User
Interfaces (VR). IEEE, 2024, pp. 450—460.

C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox, “Learning to parse
natural language commands to a robot control system,” in Experimen-
tal robotics: the 13th international symposium on experimental

robotics. Springer, 2013, pp. 403—415.
S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek, “Robots that

use language,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 3, no. 1, pp. 25-55, 2020.

[25]

[26]

(27]

[28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar et al., “Inner monologue: Embod-
ied reasoning through planning with language models,” in Proceedings
of Machine Learning Research, vol. 205, 2023, pp. 1769-1782.

A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu,
L. Takayama, F. Xia, J. Varley et al., “Robots that ask for help: Uncer-
tainty alignment for large language model planners,” in Proceedings of
the 7th Conference on Robot Learning, 2023.

L. Zha, Y. Cui, L.-H. Lin, M. Kwon, M. G. Arenas, A. Zeng, F. Xia, and
D. Sadigh, “Distilling and retrieving generalizable knowledge for robot
manipulation via language corrections,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA), 2024.

J. Liang, F. Xia, W. Yu, A. Zeng, M. G. Arenas, M. Attarian, M. Bauza,
M. Bennice, A. Bewley, A. Dostmohamed et al., “Learning to learn
faster from human feedback with language model predictive control,”
arXiv preprint arXiv:2402.11450, 2024.

J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for embodied
control,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2023, pp. 9493-9500.

I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox,
J. Thomason, and A. Garg, “Progprompt: Generating situated robot
task plans using large language models,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
11523-11530.

P. Liu, Y. Orru, C. Paxton, N. M. M. Shafiullah, and L. Pinto, “Ok-robot:
‘What really matters in integrating open-knowledge models for robotics,”
arXiv preprint arXiv:2401.12202, 2024.

K. Mahadevan, J. Chien, N. Brown, Z. Xu, C. Parada, F. Xia, A. Zeng,
L. Takayama, and D. Sadigh, “Generative expressive robot behaviors
using large language models,” in Proceedings of the 2024 ACM/IEEE
International Conference on Human-Robot Interaction, 2024, pp.
482-491.

A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “Rt-1:
Robotics transformer for real-world control at scale,” in Robotics:
Science and Systems, 2023.

O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees,
S. Dasari, J. Hejna, T. Kreiman, C. Xu et al., “Octo: An open-source
generalist robot policy,” in Robotics: Science and Systems, 2024.

M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna,
S. Nair, R. Rafailov, E. Foster, G. Lam, P. Sanketi et al., “Open-
vla: An open-source vision-language-action model,” arXiv preprint
arXiv:2406.09246, 2024.

J. Huang and M. Cakmak, “Code3: A system for end-to-end pro-
gramming of mobile manipulator robots for novices and experts,” in
Proceedings of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, 2017, pp. 453-462.

J. Huang, T. Lau, and M. Cakmak, “Design and evaluation of a rapid
programming system for service robots,” in 2016 11th ACM/IEEE In-
ternational Conference on Human-Robot Interaction (HRI). IEEE,
2016, pp. 295-302.

D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin, “Evaluating coblox: A comparative study of robotics
programming environments for adult novices,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems,
2018, pp. 1-12.

S. Alexandrova, Z. Tatlock, and M. Cakmak, ‘“Roboflow: A flow-
based visual programming language for mobile manipulation tasks,” in
2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2015, pp. 5537-5544.

D. Porfirio, A. Sauppé, A. Albarghouthi, and B. Mutlu, “Authoring and
verifying human-robot interactions,” in Proceedings of the 31st annual
acm symposium on user interface software and technology, 2018,
pp. 75-86.

B. Ikeda and D. Szafir, “Programar: Augmented reality end-user robot
programming,” ACM Transactions on Human-Robot Interaction,
vol. 13, no. 1, pp. 1-20, 2024.

R. Suzuki, A. Karim, T. Xia, H. Hedayati, and N. Marquardt, “Aug-
mented reality and robotics: A survey and taxonomy for ar-enhanced
human-robot interaction and robotic interfaces,” in Proceedings of the
2022 CHI Conference on Human Factors in Computing Systems,
2022, pp. 1-33.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

L. Gong, S. Ong, and A. Nee, “Projection-based augmented reality
interface for robot grasping tasks,” in Proceedings of the 2019 4th
International Conference on Robotics, Control and Automation,
2019, pp. 100-104.

Y. Cao, T. Wang, X. Qian, P. S. Rao, M. Wadhawan, K. Huo, and
K. Ramani, “Ghostar: A time-space editor for embodied authoring of
human-robot collaborative task with augmented reality,” in Proceedings
of the 32nd Annual ACM Symposium on User Interface Software
and Technology, 2019, pp. 521-534.

D. Sakamoto, K. Honda, M. Inami, and T. Igarashi, “Sketch and run: a
stroke-based interface for home robots,” in Proceedings of the SIGCHI
conference on human factors in computing systems, 2009, pp. 197-
200.

D. Porfirio, L. Stegner, M. Cakmak, A. Sauppé, A. Albarghouthi, and
B. Mutlu, “Sketching robot programs on the fly,” in Proceedings of
the 2023 ACM/IEEE International Conference on Human-Robot
Interaction, 2023, pp. 584-593.

Y. S. Sefidgar, P. Agarwal, and M. Cakmak, “Situated tangible robot
programming,” in Proceedings of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction, 2017, pp. 473-482.

Y. Gao and C.-M. Huang, “Pati: a projection-based augmented table-
top interface for robot programming,” in Proceedings of the 24th
international conference on intelligent user interfaces, 2019, pp. 345—
355.

D. J. Porfirio, L. Stegner, M. Cakmak, A. Sauppé, A. Albarghouthi, and
B. Mutlu, “Figaro: A tabletop authoring environment for human-robot
interaction,” in Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, 2021, pp. 1-15.

U. B. Karli, J.-T. Chen, V. N. Antony, and C.-M. Huang, “Alchemist:
Llm-aided end-user development of robot applications,” in Proceedings
of the 2024 ACM/IEEE International Conference on Human-Robot
Interaction, 2024, pp. 361-370.

Y. Ge, Y. Dai, R. Shan, K. Li, Y. Hu, and X. Sun, “Cocobo: Exploring
large language models as the engine for end-user robot programming,”
in IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 2024.

Y. S. Sefidgar, T. Weng, H. Harvey, S. Elliott, and M. Cakmak, “Robotist:
Interactive situated tangible robot programming,” in Proceedings of the
2018 ACM Symposium on Spatial User Interaction, 2018, pp. 141-
149.

G. Huang, P. S. Rao, M.-H. Wu, X. Qian, S. Y. Nof, K. Ramani, and A. J.
Quinn, “Vipo: Spatial-visual programming with functions for robot-iot
workflows,” in Proceedings of the 2020 CHI conference on human
factors in computing systems, 2020, pp. 1-13.

D. Porfirio, E. Fisher, A. Sauppé, A. Albarghouthi, and B. Mutlu,
“Bodystorming human-robot interactions,” in Proceedings of the 32nd
annual ACM symposium on user Interface software and technology,
2019, pp. 479-491.

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

S. Nasiriany, A. Maddukuri, L. Zhang, A. Parikh, A. Lo, A. Joshi,
A. Mandlekar, and Y. Zhu, “Robocasa: Large-scale simulation of ev-
eryday tasks for generalist robots,” arXiv preprint arXiv:2406.02523,
2024.

J. Kerr, C. M. Kim, M. Wu, B. Yi, Q. Wang, K. Goldberg, and
A. Kanazawa, “Robot see robot do: Imitating articulated object manip-
ulation with monocular 4d reconstruction,” in 8th Annual Conference
on Robot Learning, 2024.

J.-B. Alayrac, I. Laptev, J. Sivic, and S. Lacoste-Julien, “Joint discovery
of object states and manipulation actions,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 2127-2136.
S. Qian, L. Jin, C. Rockwell, S. Chen, and D. F. Fouhey, “Under-
standing 3d object articulation in internet videos,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 1599-1609.

X. Li, K. Hsu, J. Gu, K. Pertsch, O. Mees, H. R. Walke, C. Fu,
I. Lunawat, I. Sieh, S. Kirmani et al., “Evaluating real-world robot
manipulation policies in simulation,” arXiv preprint arXiv:2405.05941,
2024.

T. Brooks, A. Holynski, and A. A. Efros, “Instructpix2pix: Learning to
follow image editing instructions,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
18392-18402.

K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar,
and S. Levine, “Zero-shot robotic manipulation with pretrained image-

editing diffusion models,” arXiv preprint arXiv:2310.10639, 2023.
O. Elharrouss, N. Almaadeed, S. Al-Maadeed, and Y. Akbari, “Image

inpainting: A review,” Neural Processing Letters, vol. 51, pp. 2007—
2028, 2020.

M. Minderer, A. Gritsenko, and N. Houlsby, “Scaling open-vocabulary
object detection,” Advances in Neural Information Processing Sys-
tems, vol. 36, 2024.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,”
in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023, pp. 4015-4026.

S. G. Hart, “Nasa-task load index (nasa-tlx); 20 years later,” in Proceed-
ings of the human factors and ergonomics society annual meeting,
vol. 50, no. 9. Sage publications Sage CA: Los Angeles, CA, 2006,
pp. 904-908.

A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation
of the system usability scale,” Intl. Journal of Human-Computer
Interaction, vol. 24, no. 6, pp. 574-594, 2008.

M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-
graspnet: Efficient 6-dof grasp generation in cluttered scenes,” in
2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 13438-13444.

	Introduction
	Background
	Image Manipulation through ImageInThat
	Implementation
	Evaluation
	Translating Images to Robot Actions
	Discussion
	Conclusion
	References

